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NONPARAMETRIC INDEXES FOR SENSITIVITY AND BIAS:
COMPUTING FORMULAS

J. BROWN GRIER1

Northern Illinois University

Computing formulas are derived for two nonparametric indexes of sensitivity and
bias that have been suggested for signal detectability studies. A relationship is
shown between the sensitivity index and P(I), a statistic whose sampling vari-
ability is known. An additional index of bias is proposed, which is free of certain
inconveniences, yet yields identical isobias contours. Use of the new indexes is
illustrated with several sets of data.

Development of the theory of signal detecta-
bility has lead to a renewed interest in the
possible processes involved in perception,
psychophysics, and recognition memory. To a
considerable extent both theory and research
in these areas have rested on specific assump-
tions about the underlying distributions (as
in the various threshold theories versus
normality). But even without explicit assump-
tion about the distributions, data are often
judged by how close they lie to operating
characteristic curves derived from normal
distributions, and different experimental condi-
tions are characterized by their value of d'.
Recently there has been a growing interest in
various "nonparametric" analyses of detection/
recognition experiments, where specific under-
lying distributions are not assumed.

Following one line of development, Green
(1964) has shown that for experiments using
the yes-no procedure, the area under the
(theoretical) operating characteristic curve can
be interpreted as the percentage correct on an
equivalent unbiased forced-choice test, and
that this is true for any continuous underlying
distributions. The sampling variability of this
area measure has been determined by Pollack
and Hsieh (1969). A similar proof for rating-
scale experiments is due to Green and Moses
(1966). However, using data to estimate the
area under a curve of unknown theoretical
shape presents difficulties. One expedient has
been to connect the points and use the trape-
zoidal rule (Green & Moses, 1966; Pollack,
Norman, & Galanter, 1964). If the true func-
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tion is convex and the points precisely deter-
mined, this method is biased and will under-
estimate the true area; Simpson's rule should
be better. However, exact area estimation will
depend on having a functional relation be-
tween data and the area. Also, the area
analysis, while sufficient to describe the data,
does not preserve the notions of sensitivity
and bias.

In a second approach to nonparametric
analysis Pollack and Norman (1964) and
Hodos (1970) have proposed measures based
on the geometry of the unit square which can
be interpreted as indexes of sensitivity and
bias, respectively.

However, neither paper gives functional
expressions for computing their index from the
data, although Hodos does suggest a graphical
estimation procedure. The purpose of the
present paper is to derive explicit computing
expressions for the indexes, their associated
isosensitivity and isobias contours; to show
the relationship of the new sensitivity index to
the area measure; and to give examples of
their use.

COMPUTING EXPRESSIONS

In the absence of specific assumptions about
the underlying distributions, and hence the
operating characteristic curves which could
relate data points to the area, Pollack and
Norman (1964) suggested computing an area
statistic A1 which is the average of the maxi-
mum and minimum possible areas associated
with a point. Consider the outcome P = (x,y)
of a typical detection experiment plotted in
Figure 1, where * is the probability of a false
alarm, and y the probability of a hit. The two
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FIG. 1. Typical experimental outcome represented as
a point in the unit square. The probability of a hit
[P(5/5)] is plotted against the probability of false
alarm

solid lines through the point and (0,0), (1,1),
respectively, form two nonoverlapping trian-
gles, AI and AI, which define the locus of all
possible operating characteristic curves through
the point. The four line segments then define
upper and lower bounds for Green's area mea-
sure. Pollack and Norman's index is then

A' = [1]

where 7 is the area under the solid lines. The
index represents the average area under the
upper and lower bounds.

Dividing the unit square as indicated by the
solid and broken lines in Figure 1, and using
the coordinates of the point (x,y), the different
areas in Equation 1 may be determined to give

(y - x)(\+y-x)
4y(l - x) [2]

Solving for y gives the expression for the iso-
performance or isosensitivity curve

f) = min(l,

where

(ft/2)) [3]

(Uncapped letters refer to data points, and
capped letters to general values.) This curve
can be interpreted as the locus of all points
giving equivalent "average" performance.

Pollack and Norman (1964, Figure 2) show
operating characteristic curves for several
values of A'. The curves are similar to normal
operating characteristic curves for small values
of A ', but slightly flatter for large values.

The point of intersection with the negative
diagonal can be determined as

The value of $ is P(7) as described by
Pollack and Hsieh (1969) who relate it to
d', a nonparametric sensitivity index suggested
by Egan. The expression can be simplified to

1
3 - 2A1' [5]

Other experimental outcomes along the iso-
performance curve presumably differ from P
because of different criteria or bias.

Hodos (1970) has suggested as a non-
parametric measure of bias the degree to
which an outcome lies away from the negative
diagonal. Referring again to Figure 1, now let
AI and Az refer to the two triangles sharing a
common right angle in the upper left corner.
If his bias index is called B'H, Hodos has
proposed

B'a = [6]

for points to the left of the negative diagonal,
and the denominator changed to AI for points
to the right. Again using the areas suggested in
Figure 1, Hodos' index can be shown to be

B'a = 1 - : - *)
- y)

for points to the left of the diagonal and

/ y(l - y)

[7]

[8]
-v^-i. >/\>j

for points to the right. Solving Equation 7
gives the equation for the isobias contours:

[9]

A family of these curves for different values of
BH' is given in Figure 2 of Hodos (1970).
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TABLE 1
ANALYSIS OF Two SETS or DATA FROM GREEN AND SWETS

P(.S/N)

.090

.205

.400

.490

.690

.040

.130

.335

.535

.935

P(S/S)

.335

.510

.715

.785

.925

.245

.300

.695

.780

.975

P(»

.666

.663

.661

.657

.669

.640

.618

.680

.633

.598

P(7) - .660

.006

.003

.001
-.003

.009

-.020
-.042

.020
-.027
-.062

P(/) - .660
SDP(I)

.04

.02

.01
- .02

.06

-1.30
-2.73

1.30
-1.75
-4.03

P(7) -P(7)

.003
—

-.002
-.007

.006

.007
-.016

.046
-.001
-.036

P(7) -P(/)
SD7>(7)

.02
—

.01

.05

.04

.45
-1.04

3.00
- .06
-2.33

The change of formula for points to the left
and right of the negative diagonal might be
inconvenient, and another index is

B" =
- A?.

[10]

or the difference in the two areas divided by
their sum. The computing expression for this is

B" =
y(\ -y) - x)
y(i -y)+ x(\ - *)' [11]

This index ranges from +1 to —1, but in a
slightly different fashion. The solution for the
contours is

'-. [12]1-B"

The two indexes put identical isobias contours
through a given point, and choice between
them seems to be'a matter of convenience.

If two points along an isoperformance curve
are thought of as differing due to a change of
criteria, a more natural index of change might
be the likelihood ratio criterion. The value of
this index for each point can be determined
from the derivative of Equation 3 as

1 5-6x-UA'+16A'x+8A'*(l-x)
2 V* l

EXAMPLES

Use of the formulas is illustrated by several
examples. Two sets of data reported by Green
and Swets (1966, p. 90) are reproduced in Table
1, The top half is from an auditory detection
experiment in which the a priori probability of
a signal was manipulated, and the lower half
from the same experimental setting, but with
the values of the decision outcomes varied.
The data are plotted in Figures 2 and 3 along
with the experimentally expected normal
operating characteristic curve of d' = .85.
Visual inspection suggests isosensitivity for the
data in Figure 2 and possible rejection for

1.0

•9

.9

.7

.6

.-. .5

|*
& .3

.2

.1

within the limits of the square.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

P(S/N)

PIG. 2. Plot of data from a study by Green
and Swets (see Table 1).
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TABLE 2
ANALYSIS op DATA PROM MURDOCK

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

P(S/N)

FIG. 3. Plot of data from a study by Green
and Swets (see Table 1).

Figure 3. The nonparametric index is used to
examine isosensitivity. In this case the non-
parametric isosensitivity curve is virtually
identical in shape to the normal, and the plotted
curve can be taken as representing both. For
each point the value of P(I) was computed
from Equation 5, and is given in column 3.
The predicted value of the P(I) based on a
d' of .85 is approximately .660. The deviations
from the expected value are given in column 4.
The standard deviation of P(I) can be read
from Figure 17 of Pollack and Hsieh (1969)
as about .06 and correcting to N = 600
on which the data are based gives SD P(I)
= .0154. The number of standard deviations
of each point from the expected is given in
column 5. For the first experiment the hy-
pothesis of isosensitivity cannot be rejected.
The second experiment requires further analy-
sis. The lower half of column 5 shows that their
data do not agree closely with the theoretically
expected results. A second question is whether
the data points represent a common sensitivity,
even though different from the expected one.
In the absence of more explicit techniques for
combining multiple observations to estimate
a common curve the individual -P(/)s are
averaged and P(I) — .634. The deviation and
the number of standard deviations from this
value are given in columns 6 and 7, respec-
tively. The fit to the average nonparametric

P(S/N)

.053

.112

.212

.254

.275

.309

.363

.497

.576

P(S/S)

.460

.556

.673

.727

.755

.793

.839

.913

.957

P(7)

.7418

.7407

.7331

.7364

.7496

.7440

.7452

.7353

.7396

d(x, y - N)

.030
. —

-.020
-.020
-.020
-.010
-.013
.005
.020

d(x.y -NP)

.020
..006

-.002
— •
—
.010
.007
—
—

curve is still poor. The center observation is
three standard deviations from the mean and
just about as far from its nearest neighbor.
The hypothesis of a common isosensitivity
curve of the Pollack and Norman type does
not seem tenable.

Next, some data from a recognition memory
experiment (Murdock, 1965, p. 445), which has
been characterized by a normal operating char-
acteristic curve, are examined. The data are
reproduced in Table 2 and plotted in Figure 4
with the normal operating characteristic curve
of d' — 1.36 estimated by Murdock as a solid
line. The values of P(I) for each point are in
column 3 and their average is .7406. No point
appears to be an outlier, and the average
nonparametric curve is plotted in Figure 4

1.0

.9

.8

.7

.6

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

P(S/N)
FIG. 4. Plot of data from a study by

Murdock (see Table 2).
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TABLE 3
MEASURED LOCATIONS IN HODOS' FIGURE

0 | , , , , , , , , ,
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

P(S/N)

FIG. 5. Isobias contour from Hodos (see Table 3).

as the dashed line. Observation suggests the
data lie closer to the nonparametric curve than
to the normal. To examine fit, the data were
plotted on an expanded graph, the two curves
sketched, and the perpendicular distance from
each point to the respective curves was mea-
sured with a pair of dividers, in units of the
unit square. The signed deviations are given
in Table 2.

The average deviation from the nonpara-
metric operating characteristic curve is about
one-third that from the normal (.0050 versus
.0153).

A 2(7 interval around the mean of the un-
signed nonparametric deviations includes zero
(.0050 ± .0051), while the interval for the
normal curve deviations does not (.0153
± .0066). The nonparametric curve seems to
provide a more satisfactory characterization of
the data.

Use of the bias index is illustrated with some
measurements from Figure 3A of Hodos (1970),
part of which is reproduced in Figure 5. The
data points lie close to the isobias contour.
The location of each point was measured with
dividers and is given in Table 3 along with
values for B'H and B". The significance of
the observed differences is difficult to judge
without sampling distributions, but the hy-
pothesis of isobias suggested by the graph can
be questioned. There may be some error of
measurement since the original data were not
available, but the example serves to illustrate

X

.09

.20

.35

.63

.83

.88

y

.97

.96

.94

.94

.95

.97

B'H

-.645
-.760
-.752
-.758
-.663
-.724

B"

-.476
-.613
-.603
-.610
-.496
-.568

the difficulty of making isobias judgments
visually. The different isobias contours lie quite
close together near the corners of the square.

DISCUSSION

These derivations seem to provide new
indexes that are both informative and easily
computable for each data point. They arc
nonparametric only in the sense that no
specific assumptions are made about the shape
of the underlying distributions. For the sensi-
tivity index a very specific assumption is made
about the relationship between the distri-
butions, but the assumed curve seems to fit
some existing data at least as well and possibly
better than symmetric normality. Since the
assumed curve is symmetric, it might not be
useful in experiments where the shape of the
operating characteristic curve is important, or
where results indicate assymmetry. The new
statistics will be more useful when their
sampling distributions are tabulated for use
in making confidence statements, but, mean-
while, questions of homogeneity within groups,
and differences between groups can be ex-
amined with available statistical procedures.

An analytical expression for the area under
the nonparametric operating characteristic
curve would be desirable because of its interpre-
tation in terms of equivalent forced-choice
performance. For a single point, one can be
obtained by using Equation 3, but the inte-
gration must be done for two parts depending
on whether A' is equal to or greater than .75,
and in either case gives extremely messy
algebraic expressions which have not yielded
to simplification. When multiple data points
are available, the problem of combining them
into a common area estimate will require
statistical analysis. Simply computing an area
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for each point and then averaging the different
areas may or may not prove an effective
procedure.
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